Image editing just got a major upgrade with the release of Qwen-Image-Edit-2509, the latest monthly iteration of Qwen’s powerful image editing series. This version takes versatility to new heights with multi-image editing support, allowing you to combine up to three images, whether it’s person + person, person + product, or person + scene, and achieve seamless, coherent results. For single-image edits, the model now delivers exceptional consistency, preserving facial identity in portraits, brand integrity in product photos, and even handling text edits with enhanced precision, from content changes to font, color, and material adjustments. What makes it even more exciting is its native integration with ControlNet, supporting depth maps, edge maps, keypoint maps, and more, giving creators unmatched control over structure and detail. If you’re refining portraits, designing product posters, or reimagining complex scenes, Qwen-Image-Edit-2509 combines power, precision, and creativity in one package.
If you’re looking for an image editing model that’s powerful, versatile, and incredibly easy to use, Qwen-Image-Edit-2509 is a must-try. Let’s see how to get it up and running on your machine.
Prerequisites
The minimum system requirements for running this model are:
Step-by-step process to install and run Qwen-Image-Edit-2509
For the purpose of this tutorial, we’ll use a GPU-powered Virtual Machine by NodeShift since it provides high compute Virtual Machines at a very affordable cost on a scale that meets GDPR, SOC2, and ISO27001 requirements. Also, it offers an intuitive and user-friendly interface, making it easier for beginners to get started with Cloud deployments. However, feel free to use any cloud provider of your choice and follow the same steps for the rest of the tutorial.
Step 1: Setting up a NodeShift Account
Visit app.nodeshift.com and create an account by filling in basic details, or continue signing up with your Google/GitHub account.
If you already have an account, login straight to your dashboard.
Step 2: Create a GPU Node
After accessing your account, you should see a dashboard (see image), now:
- Navigate to the menu on the left side.
- Click on the GPU Nodes option.
- Click on Start to start creating your very first GPU node.
These GPU nodes are GPU-powered virtual machines by NodeShift. These nodes are highly customizable and let you control different environmental configurations for GPUs ranging from H100s to A100s, CPUs, RAM, and storage, according to your needs.
Step 3: Selecting configuration for GPU (model, region, storage)
- For this tutorial, we’ll be using 1x H100 GPU, however, you can choose any GPU as per the prerequisites.
- Similarly, we’ll opt for 200GB storage by sliding the bar. You can also select the region where you want your GPU to reside from the available ones.
Step 4: Choose GPU Configuration and Authentication method
- After selecting your required configuration options, you’ll see the available GPU nodes in your region and according to (or very close to) your configuration. In our case, we’ll choose a 1x RTX A6000 48GB GPU node with 64vCPUs/63GB RAM/200GB SSD.
2. Next, you’ll need to select an authentication method. Two methods are available: Password and SSH Key. We recommend using SSH keys, as they are a more secure option. To create one, head over to our official documentation.
Step 5: Choose an Image
The final step is to choose an image for the VM, which in our case is Nvidia Cuda.
That’s it! You are now ready to deploy the node. Finalize the configuration summary, and if it looks good, click Create to deploy the node.
Step 6: Connect to active Compute Node using SSH
- As soon as you create the node, it will be deployed in a few seconds or a minute. Once deployed, you will see a status Running in green, meaning that our Compute node is ready to use!
- Once your GPU shows this status, navigate to the three dots on the right, click on Connect with SSH, and copy the SSH details that appear.
As you copy the details, follow the below steps to connect to the running GPU VM via SSH:
- Open your terminal, paste the SSH command, and run it.
2. In some cases, your terminal may take your consent before connecting. Enter ‘yes’.
3. A prompt will request a password. Type the SSH password, and you should be connected.
Output:
Next, If you want to check the GPU details, run the following command in the terminal:
!nvidia-smi
Step 7: Set up the project environment with dependencies
- Create a virtual environment using Anaconda.
conda create -n qwen python=3.11 -y && conda activate qwen
Output:
2. Install required dependencies.
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
pip install git+https://github.com/huggingface/diffusers
pip install transformers accelerate gradio pillow
Output:
3. Install and run jupyter notebook.
conda install -c conda-forge --override-channels notebook -y
conda install -c conda-forge --override-channels ipywidgets -y
jupyter notebook --allow-root
4. If you’re on a remote machine (e.g., NodeShift GPU), you’ll need to do SSH port forwarding in order to access the jupyter notebook session on your local browser.
Run the following command in your local terminal after replacing:
<YOUR_SERVER_PORT>
with the PORT allotted to your remote server (For the NodeShift server – you can find it in the deployed GPU details on the dashboard).
<PATH_TO_SSH_KEY>
with the path to the location where your SSH key is stored.
<YOUR_SERVER_IP>
with the IP address of your remote server.
ssh -L 8888:localhost:8888 -p <YOUR_SERVER_PORT> -i <PATH_TO_SSH_KEY> root@<YOUR_SERVER_IP>
Output:
After this copy the URL you received in your remote server:
And paste this on your local browser to access the Jupyter Notebook session.
Step 8: Download and Run the model
- Open a Python notebook inside Jupyter.
2. Download the model checkpoints.
import os
import torch
from PIL import Image
from diffusers import QwenImageEditPlusPipeline
pipeline = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=torch.bfloat16)
print("pipeline loaded")
pipeline.to('cuda')
pipeline.set_progress_bar_config(disable=None)
image = Image.open("cat.png")
prompt = "Add a pillow below cat's head and cover its top with a blanket."
inputs = {
"image": [image],
"prompt": prompt,
"generator": torch.manual_seed(0),
"true_cfg_scale": 4.0,
"negative_prompt": " ",
"num_inference_steps": 40,
"guidance_scale": 1.0,
"num_images_per_prompt": 1,
}
with torch.inference_mode():
output = pipeline(**inputs)
output_image = output.images[0]
output_image.save("output_image_edit_plus.png")
print("image saved at", os.path.abspath("output_image_edit_plus.png"))
Output:
Original Image:
Prompt:
“Add a pillow below cat’s head and cover its top with a blanket.”
Edited Image by Qwen-Image-Edit-2509:
Conclusion
Qwen-Image-Edit-2509 makes many new age demands possible in image editing, from multi-image compositions that blend people, products, and scenes with striking coherence, to single-image refinements that preserve identities, enhance product consistency, and even edit text with stylistic precision. Its native ControlNet support further empowers creators with structural guidance through depth, edge, and keypoint maps, giving unprecedented creative control. When paired with NodeShift Cloud, all these capabilities become instantly accessible, removing setup complexity, enabling seamless scalability, and providing a reliable platform where creators, developers, and enterprises can experiment and deploy with ease.